
Monetd Documentation
Release 0

Mosaic Networks

Sep 13, 2019

Contents

1 MONET and the MONET Hub 3

2 Spectrum of possible Implementations 5

3 Ethereum with Babble Consensus 7

4 PoS and PoA 9

5 Conclusion 11

6 Overview 13
6.1 Tools . 13

6.1.1 Monetd . 13
6.1.2 Monetcli . 13

6.2 Accounts . 13
6.2.1 What is an account? . 13
6.2.2 What is an account file? . 14

6.3 Transactions . 14

7 Installing monetd 15
7.1 Versioning . 15
7.2 Docker . 15
7.3 Downloads . 15
7.4 Building From Source . 15

7.4.1 Dependencies . 15
7.4.2 Installation . 16

8 Getting Started 17
8.1 Creating A Single Node Network . 17
8.2 Using monetcli . 17

9 Joining a Network 21
9.1 Create An Account . 21
9.2 Pull the Configuration From an Existing Node . 22
9.3 Apply to Join the Network . 22
9.4 Starting the Node . 23

10 Transaction Fees 25

i

10.1 Distribution Among Validators . 25
10.2 Minimum Gas Price . 25

11 Monetd API 27
11.1 Get Account . 27
11.2 Call . 28
11.3 Submit Transaction . 28
11.4 Get Receipt . 29
11.5 Info . 29
11.6 POA . 30
11.7 Genesis.json . 30
11.8 Block . 31
11.9 Current Peers . 32
11.10 Genesis Peers . 33

12 POA Smart Contract 35
12.1 Solidity . 35

12.1.1 Version . 35
12.1.2 Constructor . 35
12.1.3 Modifier . 35
12.1.4 CheckAuthorised . 35
12.1.5 Payable calls . 36
12.1.6 Decision Function . 36
12.1.7 Information Calls . 36
12.1.8 Events . 36

12.2 Generated Genesis Whitelist Section . 37

13 Giverny Examples 39
13.1 Development Test Networks . 39

13.1.1 New . 40
13.1.2 Export Network . 40

14 Monetd Configuration 41
14.1 Eth . 41
14.2 Babble . 42
14.3 Run Options . 42

15 Monetd Reference 45
15.1 Global Parameters . 46
15.2 Version . 46
15.3 Keys . 46

15.3.1 Parameters . 47
15.3.2 Monikers . 47
15.3.3 New . 47
15.3.4 Inspect . 48
15.3.5 Update . 49
15.3.6 List . 50

15.4 Config . 50
15.4.1 Clear . 51
15.4.2 Contract . 51
15.4.3 Location . 51
15.4.4 Build . 52
15.4.5 Pull . 53

15.5 Run . 54

ii

16 Giverny Reference 55
16.1 Global Flag . 55
16.2 Help . 55
16.3 Version . 55
16.4 Keys . 56

16.4.1 Keys Flags . 56
16.4.2 Import . 56

16.5 Server . 57
16.5.1 Start . 57
16.5.2 Stop . 57
16.5.3 Status . 57

16.6 Network . 57
16.6.1 Location . 58
16.6.2 New . 58
16.6.3 Build . 60
16.6.4 Export . 60
16.6.5 Import . 60

16.7 Transactions . 61

17 Licences 63

18 FAQ 67
18.1 General . 67

18.1.1 What is the difference between MONET, MONET Hub, Monet Toolchain and monetd? . . 67
18.1.2 Why Giverny? . 67

19 The Monet Toolchain 69
19.1 Quick Start . 69

iii

iv

Monetd Documentation, Release 0

In this document we explain our implementation of the MONET Hub; in particular the mechanism that dictates who
can participate in the consensus system, and how to make participants accountable for their actions. Before deliberat-
ing on an implementation, it is important to have a clear picture of the desired outcome. So we will start by reiterating
the role of the Hub in MONET, and outline its principal requirements. We then visit the spectrum of potential im-
plementations before explaining our choice of a permissioned Byzantine Fault Tolerant (BFT) consensus algorithm
coupled to the Ethereum Virtual Machine (EVM). Lastly we weigh up the pros and cons of Proof of Stake (PoS), and
explain our decision to implement Proof of Authoriry (PoA) for the time being.

Contents 1

Monetd Documentation, Release 0

2 Contents

CHAPTER 1

MONET and the MONET Hub

MONET’s mission is to boost the adoption of peer-to-peer architectures by enabling mobile devices to connect directly
to one another in dynamic ad-hoc networks. We believe that a new generation of applications will emerge from this
technology. The real force behind MONET, which makes it original and disruptive, is the concept of Mobile Ad-
Hoc Blockchains, and the open-source software which implements it; particularly Babble, the powerful consensus
algorithm which is suitable for mobile deployments due to its speed, bandwidth efficiency, and leaderlessness.

We anticipate that many MONET applications will require a common set of services to persist non-transient data,
carry information across ad-hoc blockchains, and facilitate peer-discovery. So we set out to build the MONET Hub,
an additional public utility that provides these services. In the spirit of open architecture, MONET doesn’t rely on any
central authority, so anyone is free to implement their own alternative, but the MONET Hub is there to offer a reliable,
fast, and secure solution to kickstart the system.

As such, the qualitative requirements of the Hub are:

• Speed: It should support thousands of commands per second, with latencies under one second.

• Finality: Results from the hub should be definitive, without the possibility of being arbitrarily overridden in the
future.

• Availability: It should provide a continuous service in the face of network failures or isolated disruptions.

• Cost: As we want to lower the barrier to entry for developers, using the Hub should be cheaper than rolling out
one’s own solution.

• Security: The hub should provide a trusted source of data and computation, with measures guarding against
information loss, data manipulation, or censorship.

• Governance: The set of entities controlling this utility should be transparent, with a mechanism to add or
remove participants, and keep them accountable for their actions.

• Flexibility: It should be possible and relatively easy to update the software, recover from failures, and adapt to
changes.

3

Monetd Documentation, Release 0

4 Chapter 1. MONET and the MONET Hub

CHAPTER 2

Spectrum of possible Implementations

From a simple web-service hosted on a privately-owned server, to a public global blockchain like Ethereum, there are
many potential ways to implement this service. However, given our requirements, a simple server scores pretty low
in all categories (except perhaps speed and flexibility), and global public blockchains are too slow, too hard to update,
and usually provide only probabilistic finality, which is not acceptable.

Somewhere in the middle lies a category of distributed systems consisting of relatively small clusters of servers main-
taining identical copies of an application via sophisticated communication routines and consensus algorithms. Within
this category, there are instances where the entire cluster is controlled by a single entity, and others where each replica
is controlled by a different entity.

Modern blockchain projects, including cryptocurrencies like Facebook’s Libra and the Cosmos Atom, adopt the second
variant, where nodes are controlled by different entities. A naive implementation would render them vulnerable to
malicious actors trying to subvert the system; hence they require strong consensus algorithms, commonly referred to
as Byzantine Fault Tolerant (BFT), and a reputation system to incentivize good behavior and punish malicious actors.

Given the requirements stated in the previous section, we believe that the MONET Hub falls in the same category, and
requires a permissioned BFT system.

5

Monetd Documentation, Release 0

6 Chapter 2. Spectrum of possible Implementations

CHAPTER 3

Ethereum with Babble Consensus

We have developed the Monet Toolchain, a complete set of software tools for setting up and using the MONET Hub.
This includes monetd, the software daemon that powers nodes on the MONET Hub.

To build monetd, we used our own BFT consensus algorithm, Babble, because it is fast, leaderless, and offers finality.
For the application state and smart-contract platform, we use the Ethereum Virtual Mahcine (EVM) via EVM-Lite,
which is a stripped down version of Go-Ethereum.

The EVM is a security-oriented virtual machine specifically designed to run untrusted code on a network of computers.
Every transaction applied to the EVM modifies the State which is persisted in a Merkle Patricia tree. This data structure
allows to simply check if a given transaction was actually applied to the VM and can reduce the entire State to a single
hash (merkle root) rather analogous to a fingerprint.

The EVM is meant to be used in conjunction with a system that broadcasts transactions across network participants
and ensures that everyone executes the same transactions in the same order. Ethereum uses a Blockchain and a Proof
of Work consensus algorithm. EVM-Lite makes it easy to use any consensus system, including Babble.

The remaining question is how to govern the validator-set, and what to use as a reputation system to punish or incen-
tivise participants to behave correctly.

7

https://github.com/mosaicnetworks/babble
https://github.com/mosaicnetworks/evm-lite
https://github.com/ethereum/go-ethereum
https://github.com/mosaicnetworks/babble

Monetd Documentation, Release 0

8 Chapter 3. Ethereum with Babble Consensus

CHAPTER 4

PoS and PoA

A BFT consensus algorithm ensures that a distributed system remains available and consistent in adversarial condi-
tions, with some nodes exhibiting arbitrary failures or malicious behavior, as long as a majority of participants are
functioning correctly (actually). Any trust in the system therefore depends on the ability to legitimise this assumption.
What is needed is a mechanism to ensure, with a high degree of confidence, that at least two thirds of participants in
the consensus system are functioning correctly at all times. The problem is two-fold: who gets to be a participant, and
how are participants incentivised to behave correctly? Not surprisingly, the most convincing answers revolve around
money or reputational risk.

In a Proof of Stake (PoS) arrangement, participants are required to lock a significant portion of their assets (usually
the blockchain’s built-in token), and respect an extended un-bonding period when they want to leave. At any given
time, the validator set is defined by the top N stakers, where N is the desired size of the validator-set. If they are caught
undermining the network, this deposit is destroyed. Hence, participants are deterred from cheating. Additionally,
participants are usually programmatically compensated for actively participating in securing the network. Hence they
are incentivised to act correctly. A nice feature of PoS is that, being a very capitalistic model, it is relatively open;
anyone can participate without asking for permission, as long as they put up a stake.

In Proof of Authority (PoA), the stake is tied to reputational risk. It relies on the natural aversion of most humans
to tarnish their own reputation. The list of allowed validators is governed by a whitelist. The whitelist is amended
through a voting process among existing whitelisted entities. This scheme is less anonymous or open than PoS but has
deep roots. The trust of a PoA system rests on the initial group of participants because any amendment to the list has
to gather consensus from them; so the trust (or distrust) is carried over as the validator-set evolves. In a system like
Babble, the most serious offence consists in signing two different blocks at the same height. Evidence of this can be
packaged into an irrefutable proof, and used to punish the guilty participants.

Proof of Stake opens exciting opportunities for a variety of stakeholders, and these economic incentives are excellent
for the industry as they drive innovation. That being said, we are of the opinion that it is too early to ascertain the
resilience of PoS in the face of decisive attacks, as current production deployments are very recent, and the theoretical
arguments alone are not sufficiently convincing (although they sound quite reasonable). We are keeping an eye on PoS
systems, hoping that they withstand the test of time. In the meantime, we have opted to implement PoA, to roll out a
reliable version of the MONET Hub, with an eye on extending to PoS in a coordinated software update later down the
road.

9

Monetd Documentation, Release 0

10 Chapter 4. PoS and PoA

CHAPTER 5

Conclusion

The MONET Hub is a pivotal utility that facilitates the creation of mobile ad-hoc blockchains, and the emergence
of a new breed of decentralised applications. To maximise the performance, security, and flexibility of this system,
we have opted to build the Monet Toolchain, a smart-contract platform based on the Ethereum Virtual Machine and
a state-of-the-art BFT consensus algorithm, Babble. To govern the validator-set involved in the consensus algorithm,
we have chosen to implement a Proof of Authority system, with the idea of extending to Proof of Stake when more
evidence of its efficacy becomes available.

11

Monetd Documentation, Release 0

12 Chapter 5. Conclusion

CHAPTER 6

Overview

This document describes the tools for operating a Monet Toolchain node, and a couple of important concepts regarding
the account model. In other documents, we provide guidance on using these tools to perform common tasks, as well
as a complete reference of commands and API functions.

6.1 Tools

6.1.1 Monetd

monetd is the server process that connects to other nodes, participates in the consensus algorithm, and maintains its
own copy of the application state. Additionaly, the giverny program facilitates the creation of local Monet Toolchain
networks for testing purposes. We don’t expect most people to use giverny as it is mostly a development tool.

monetd and giverny are written in Go, and reside in the same github repository because they share significant source
code. Please follow the installation instructions to get started.

6.1.2 Monetcli

monetcli is the client-side program that interacts with a running Monet Toolchain node, and enables users to
make transfers, query accounts, deploy and call smart-contracts, or participate in the PoA governance mechanism.
monetcli is a Node.js project. It can be installed easily with npm install -g monetcli.

6.2 Accounts

6.2.1 What is an account?

The Monet Toolchain, and thus MONET, uses the same account model as Ethereum. Accounts represent identities
of external agents and are associated with a balance (and storage for Contract accounts). They rely on public key
cryptography to sign transactions so that the EVM can securely validate the identity of a transaction sender.

13

https://golang.org/
https://github.com/mosaicnetworks/monetd/
https://nodejs.org/

Monetd Documentation, Release 0

Using the same account model as Ethereum doesn’t mean that existing Ethereum accounts automatically have the
same balance in MONET (or vice versa). In Ethereum, balances are denoted in Ether, the cryptocurrency maintained
by the public Ethereum network. On the other hand, every MONET network (even a single node network) maintains
a completely separate ledger and may use any name for the corresponding coin. The official MONET token is Tenom.

What follows is mostly inspired from the Ethereum Docs:

Accounts are objects in the EVM State. They come in two types: Externally owned accounts, and Contract accounts.
Externally owned accounts have a balance, and Contract accounts have a balance and storage. The EVM State is the
state of all accounts which is updated with every transaction. The underlying consensus engine ensures that every
participant in a Monet Toolchain network processes the same transactions in the same order, thereby arriving at the
same State. The use of Contract accounts with the EVM makes it possible to deploy and use SmartContracts which
we will explore in another document.

6.2.2 What is an account file?

This is best explained in the Ethereum Docs:

Every account is defined by a pair of keys, a private key, and public key. Accounts are indexed by their
address which is derived from the public key by taking the last 20 bytes. Every private key/address pair
is encoded in a keyfile. Keyfiles are JSON text files which you can open and view in any text editor. The
critical component of the keyfile, your account’s private key, is always encrypted, and it is encrypted with
the password you enter when you create the account.

6.3 Transactions

A transaction is a signed data package that contains instructions for the EVM. It can contain instructions to move coins
from one account to another, create a new Contract account, or call an existing Contract account. Transactions are
encoded using the custom Ethereum scheme, RLP, and contain the following fields:

• The recipient of the message.

• A signature identifying the sender and proving their intention to send the transaction.

• The number of coins to transfer from the sender to the recipient.

• An optional data field, which can contain the message sent to a contract.

• A STARTGAS value, representing the maximum number of computational steps the transaction execution is
allowed to take.

• a GASPRICE value, representing the fee the sender is willing to pay for gas. One unit of gas corresponds to the
execution of one atomic instruction, i.e., a computational step.

14 Chapter 6. Overview

http://ethdocs.org/en/latest/account-management.html
http://ethdocs.org/en/latest/account-management.html

CHAPTER 7

Installing monetd

7.1 Versioning

monetd versions follow semantic versioning. As we are still in the 0.x range, different versions might contain
undocumented and/or breaking changes. At this stage, the prefered way of installing monetd is building from source,
or using our public Docker images.

7.2 Docker

Docker images of monetd are available from the mosaicnetworks organisation. Use the latest tag for the
latest released version. The advantage of using Docker containers is that they come packaged with all the necessary
binary files, including solc, and contain an isolated running environment where monetd is sure to run.

Example: Mount a configuration directory, and run a node from inside a monetd container.

docker run --rm -v ~/.monet:/.monet mosaicnetworks/monetd run

7.3 Downloads

Binary packages of monetd will be available from github.

7.4 Building From Source

7.4.1 Dependencies

The key components of the Monet Toolchain, which powers the MONET Hub, are written in Golang. Hence, the first
step is to install Go version 1.9 or above, which is both the programming language and a CLI tool for managing Go

15

https://semver.org
https://github.com/mosaicnetworks/monetd/releases
https://golang.org/

Monetd Documentation, Release 0

code. Go is very opinionated and requires defining a workspace where all Go code resides. The simplest test of a Go
installation is:

$ go version

monetd uses Glide to manage dependencies.

$ curl https://glide.sh/get | sh

Solidity Compiler

The Monet Toolchain uses Proof of Authority (PoA) to manage the validator set. This is implemented using a smart-
contract written in Solidity, with the corresponding EVM bytecode set in the genesis file. For every newly defined
network, the smart-contract needs to be recompiled because it embeds the initial whitelist. Hence, the Solidity compiler
(solc) is a requirement to define a new network and produce the appropriate genesis file.

Please refer to the solidity compiler installation instructions.

Attention: The Node.js version of the compiler is not supported. Do not install via npm install solc.

Other requirements

Bash scripts used in this project assume the use of GNU versions of coreutils. Please ensure you have GNU versions
of these programs installed:-

example for macOS:

--with-default-names makes the `sed` and `awk` commands default to gnu sed and gnu
→˓awk respectively.
brew install gnu-sed gawk --with-default-names

7.4.2 Installation

Clone the repository in the appropriate GOPATH subdirectory:

$ mkdir -p $GOPATH/src/github.com/mosaicnetworks/
$ cd $GOPATH/src/github.com/mosaicnetworks
[...]/mosaicnetworks$ git clone https://github.com/mosaicnetworks/monetd.git

Run the following command to download all dependencies and put them in the vendor folder.

[...]/monetd$ make vendor

Then build and install:

[...]/monetd$ make install

16 Chapter 7. Installing monetd

https://golang.org/doc/code.html#Workspaces
http://github.com/Masterminds/glide
https://solidity.readthedocs.io/en/develop/introduction-to-smart-contracts.html
https://solidity.readthedocs.io/en/develop/installing-solidity.html
https://github.com/mosaicnetworks/monetd

CHAPTER 8

Getting Started

In this document we explain how to run a single node and how to use monetcli to interact with it. In another section,
we will explain how to join an existing network. For details about any command, please refer to the specification.

8.1 Creating A Single Node Network

In short, run the following three commands to start a standalone node:

$ monetd keys new node0
$ monetd config build node0
$ monetd run

The keys new command will prompt us for a password, and generate a new encrypted keyfile in the default keystore
~/.monet/keystore. We identified our key with the node0 moniker.

The config build command takes our key, and generates a minimal network configuration with a single validator
node, and a prefunded account. Again, the configuration is written to ~/.monet.1

Finally, the run command starts a monetd node, which will default to using the configuration files in ~/.monet.1

8.2 Using monetcli

Let’s use monetcli to query the newly created node. First of all, install monetcli with npm install -g
monetcli.

While monetd is still running, open another terminal and start monetcli in interactive mode:

1 This location is for Linux instances. Mac and Windows uses a different path. The path for your instance can be ascertain with this command:
monetd config location

17

Monetd Documentation, Release 0

$monetcli i

__ __ _ ____ _ ___
\/	___ _ __ ___		_ / ___				_ _										
	\/		/ _ \	'_ \ / _ \	__												
				(_)						__/		_		___		___	
_		_	___/	_		_	___	__	____		_____		___				

Mode: Interactive
Data Dir: /home/user/.monet
Config File: /home/user/.monet/monetcli.toml
Keystore: /home/user/.monet/keystore

Commands:

help [command...] Provides help for a given command.
exit Exits application.
accounts create [options] Creates an encrypted keypair locally
accounts get [options] [address] Fetches account details from a connected node
accounts list [options] List all accounts in the local keystore

→˓directory
accounts update [options] [address] Update passphrase for a local account
accounts import [options] Import an encrypted keyfile to the keystore
config set [options] Set values of the configuration inside the

→˓data directory
config view [options] Output current configuration file
poa check [options] [address] Check whether an address is on the whitelist
poa info [options] Display Proof of Authority information
poa nominate [options] [address] Nominate an address to proceed to election
poa nomineelist [options] List nominees for a connected node
poa vote [options] [address] Vote for an nominee currently in election
poa whitelist [options] List whitelist entries for a connected node
transfer [options] Initiate a transfer of token(s) to an address
info [options] Display information about node
version [options] Display current version of cli
debug Toggle debug mode
clear Clear output on screen

Type info to check the status of the node:

monetcli$ info
.-------------------------------------.
Key	Value
consensus_events	0
consensus_transactions	0
events_per_second	0.00
id	1022922485
last_block_index	-1
last_consensus_round	nil
moniker	node0
num_peers	1
round_events	0
rounds_per_second	0.00
state	Babbling
sync_rate	1.00
transaction_pool	0

(continues on next page)

18 Chapter 8. Getting Started

Monetd Documentation, Release 0

(continued from previous page)

| type | babble |
| undetermined_events | 0 |
'-------------------------------------'

Type accounts list to get a list of accounts in the keystore, and the balance associated with them.

monetcli$ accounts list
.---
→˓--.
| Moniker | Address | Balance |
→˓Nonce |
|---------|--|------------------------|-----
→˓--|
| node0 | 0xa10aae5609643848fF1Bceb76172652261dB1d6c | 1234567890000000000000 |
→˓0 |
'---
→˓--'

So we have a prefunded account. The same account is used as a validator in Babble, and as a Tenom-holding account
in the ledger. This is the same account, node0, that we created in the previous steps, with the encrypted private key
residing in ~/.monet/keystore.

Now, let’s create a new key using monetcli, and transfer some tokens to it.

monetcli$ accounts create
? Moniker: node1
? Output Path: /home/user/.monet/keystore
? Passphrase: [hidden]
? Re-enter passphrase: [hidden]
{"version":3,"id":"89970faf-8754-468e-903c-c9d3248a08cc","address":
→˓"960c13654c477ac1d2d7f8fc7ae84d93a2225257","crypto":{"ciphertext":
→˓"7aac819c1bed442d778
97b690e5c2f14416589c7bdd6bdd2b5df5d03584ce0ec","cipherparams":{"iv":
→˓"3d15a67d76293c3b7123f2bde76ba120"},"cipher":"aes-128-ctr","kdf":"scrypt","kdfparams
→˓"
:{"dklen":32,"salt":"730dd67f175a77c9833a230e334719292cbb735607795b1b84484e3d04783510
→˓","n":8192,"r":8,"p":1},"mac":"7535c31c277a698207d278cd1f1df90747463
e390b822cfef7d2faf8f1fa1809"}}

Like monetd keys new this command created a new key and wrote the encrypted keyfile in ~/.monet/keystore.
Let’s double check that the key was created:

monetcli$ accounts list
.---
→˓--.
| Moniker | Address | Balance |
→˓Nonce |
|---------|--|------------------------|-----
→˓--|
| node0 | 0xa10aae5609643848fF1Bceb76172652261dB1d6c | 1234567890000000000000 |
→˓0 |
| node1 | 0x960c13654c477ac1d2d7f8fc7ae84d93a2225257 | 0 |
→˓0 |
'---
→˓--'

Now, let’s transfer 100 tokens to it.

8.2. Using monetcli 19

Monetd Documentation, Release 0

monetcli$ transfer
? From: node0 (1,234,567,890,000,000,000,000)
? Enter password: [hidden]
? To 0x960c13654c477ac1d2d7f8fc7ae84d93a2225257
? Value: 100
? Gas: 1000000
? Gas Price: 0
{

"from": "0xa10aae5609643848fF1Bceb76172652261dB1d6c",
"to": "0x960c13654c477ac1d2d7f8fc7ae84d93a2225257",
"value": 100,
"gas": 1000000,
"gasPrice": 0

}
? Submit transaction Yes
Transaction submitted successfully.

Finally, we can check the account balances again to verify the outcome of the transfer:

monetcli$ accounts list
.---
→˓--.
| Moniker | Address | Balance |
→˓Nonce |
|---------|--|------------------------|-----
→˓--|
| node0 | 0xa10aae5609643848fF1Bceb76172652261dB1d6c | 1234567889999999999900 |
→˓1 |
| node1 | 0x960c13654c477ac1d2d7f8fc7ae84d93a2225257 | 100 |
→˓0 |
'---
→˓--'

20 Chapter 8. Getting Started

CHAPTER 9

Joining a Network

This section describes how to join an existing network that is already running, such as the one created in Getting
Started.

Here’s a summary of the steps required to join an existing network built with the Monet Toolchain:

$ monetd keys new node1
$ monetd config pull [address]:[port] --key node1
$ monetcli poa nominate -h [address] -p [port] --from [node1 address] --pwd [password
→˓file for node1 key] --moniker node1 [node1 address]

wait to be accepted in the whitelist, which can be checked with
$ monetd poa whitelist
or
$ monetd poa nomineelist

$ monetd run

Where [address] and [port] correspond to the endpoint of an existing peer in the network.

This scenario is designed to be run on a machine other than the one that is running the existing node.

9.1 Create An Account

We need to generate a new key-pair for our account:

$ monetd keys new node1
Passphrase:
Repeat passphrase:
Address: 0x5a735fC1235ce1E60eb5f9B9BCacb643a9Da27F4

21

Monetd Documentation, Release 0

9.2 Pull the Configuration From an Existing Node

We now pull the monetd configuration files from an existing peer. The syntax for this command is:

$ monetd config pull [peer] [--key] [--address]

The peer parameter is the address/IP of an existing node on the network. The network’s configuration is requested
from this peer. If the address does not specify a port, the default API port (8080) is assumed.

We also need to specify the IP address of our own node. For a live network that would clearly be a public IP address,
but for an exploratory testnet, we would recommend using an internal IP address. On Linux ifconfig will give
you IP address information. This can be set by using the –address flag. If not specified monetd will pick the first
non-loopback address.

The --key parameter specifies the keyfile to use by moniker.

Thus we need to run the following command, but replace 192.168.1.5:8080 with the endpoint of the existing
peer.

$ monetd config pull 192.168.1.5:8080 --key node1

9.3 Apply to Join the Network

If we tried to run monetd at this stage, it would not be allowed to join the other node because it isn’t whitelisted yet.
So we need to apply to the whitelist first.

We do so with the monetcli poa nominate command. The syntax is:

$ monetcli poa nominate -h <existing node> --from <moniker> --moniker <nominee
→˓moniker> --pwd <passphrase file> <nominee address>

But we can also do it interactively. On the existing instance (node0), run the following interactive ‘‘monetcli‘‘
session:

monetcli i
__ __ _ ____ _ ___

\/	___ _ __ ___		_ / ___				_ _										
	\/		/ _ \	'_ \ / _ \	__												
				(_)						__/		_		___		___	
_		_	___/	_		_	___	__	____		_____		___				

Mode: Interactive
Data Dir: /home/user/.monet
Config File: /home/user/.monet/monetcli.toml
Keystore: /home/user/.monet/keystore

Commands:
[...]

monetcli$ poa nominate
? From: node0
? Passphrase: [hidden]
? Nominee: 0x960c13654c477ac1d2d7f8fc7ae84d93a2225257
? Moniker: node1

(continues on next page)

22 Chapter 9. Joining a Network

Monetd Documentation, Release 0

(continued from previous page)

You (0xa10aae5609643848ff1bceb76172652261db1d6c) nominated 'node1'
→˓(0x960c13654c477ac1d2d7f8fc7ae84d93a2225257)

monetcli$ poa nomineelist
.--.
Moniker	Address	Up Votes	Down Votes
Node1	0x960c13654c477ac1d2d7f8fc7ae84d93a2225257	0	0
'--'

Now that, we have applied to the whitelist (via node0), we need all the entities in the current whitelist to vote for us.
At the moment, only node0 is in the whitelist, so let’s cast a vote.

monetcli$ poa whitelist
.--.
Moniker	Address
Node0	0xa10aae5609643848ff1bceb76172652261db1d6c
'--'

monetcli$ poa vote
? From: node0
? Passphrase: [hidden]
? Nominee: 0x960c13654c477ac1d2d7f8fc7ae84d93a2225257
? Verdict: Yes
You (0xa10aae5609643848ff1bceb76172652261db1d6c) voted 'Yes' for
→˓'0x960c13654c477ac1d2d7f8fc7ae84d93a2225257'.
Election completed with the nominee being 'Accepted'.

monet$ poa whitelist
.--.
Moniker	Address
Node0	0xa10aae5609643848ff1bceb76172652261db1d6c
Node1	0x960c13654c477ac1d2d7f8fc7ae84d93a2225257
'--'

Finaly node1 made it into the whitelist.

9.4 Starting the Node

To start node1, run the simple monetd run command. You should be able see the JoinRequest going through
consensus, and being accepted by the PoA contract.

$ monetd run

9.4. Starting the Node 23

Monetd Documentation, Release 0

24 Chapter 9. Joining a Network

CHAPTER 10

Transaction Fees

Every operation that modifies the state (transfer, smart-contract creation, smart-contract call, etc.) carries a cost.
Within the EVM, this cost is denominated in gas. For example, a simple transfer costs 21000 gas. When users create
and submit transactions, they can set the maximum amount of gas they want to spend, and how much om (10^-18
Tenom) they are willing to pay per unit of gas consumed. Therefore, if their transaction is applied, it will cost them a
transaction fee of gas-price * gas-consumed, which is capped by gas-price * gas-max.

Transaction fees serve a dual purpose: to incentivise validators, and to prevent denial of service attacks.

10.1 Distribution Among Validators

Every transaction applied to the EVM is associated with a coinbase address (possibly empty), which receives the
transaction fee. In monetd, we have implemented a system that fairly and securily distributes fees among validators.

Upon committing a Babble block, we fetch the corresponding validator-set from Babble. Then we use the block hash
to obtain a pseudo-random number which we use to select a peer from the validator-set. This peer will receive all the
transaction fees from that block. This system is fair and secure because the selection process is evenly distributed and
it is impossible for malicious validators to game it by manipulating the block hash.

10.2 Minimum Gas Price

Validators running a monetd node can set a minimum gas price, via the eth.min-gas-price configuration flag, to
refuse broadcasting transactions with lower gas-prices. To send a transaction via a node, the transaction creator must
set the gas price to a value greater or equal to that node’s minimum gas price. Note that this filtering is done at the
service layer, so it will not prevent other nodes from including cheaper transactions.

25

Monetd Documentation, Release 0

26 Chapter 10. Transaction Fees

CHAPTER 11

Monetd API

monetd exposes an HTTP API at the address specified by the --api-listen flag. This document contains the
API specification with some basic examples using curl. For API clients (javascript libraries, CLI, and GUI), please
refer to Monet CLI

11.1 Get Account

Retrieve information about any account.

GET /account/{address}
returns: JsonAccount

type JsonAccount struct {
Address string `json:"address"`
Balance *big.Int `json:"balance"`
Nonce uint64 `json:"nonce"`
Code string `json:"bytecode"`

}

Example:

host:~$ curl http://localhost:8080/account/0xa10aae5609643848fF1Bceb76172652261dB1d6c
→˓-s | jq
{

"address": "0xa10aae5609643848fF1Bceb76172652261dB1d6c",
"balance": 1234567890000000000000,
"nonce": 0,
"bytecode": ""

}

27

https://github.com/mosaicnetworks/monetcli

Monetd Documentation, Release 0

11.2 Call

Call a smart-contract READONLY function. These calls will NOT modify the EVM state, and the data does NOT
need to be signed.

POST /call
data: JSON SendTxArgs
returns: JSON JsonCallRes

type SendTxArgs struct {
From common.Address `json:"from"`
To *common.Address `json:"to"`
Gas uint64 `json:"gas"`
GasPrice *big.Int `json:"gasPrice"`
Value *big.Int `json:"value"`
Data string `json:"data"`
Nonce *uint64 `json:"nonce"`

}

type JsonCallRes struct {
Data string `json:"data"`

}

Example:

curl http://localhost:8080/call \
-d '{"constant":true,"to":"0xabbaabbaabbaabbaabbaabbaabbaabbaabbaabba","value":0,"data
→˓":"0x8f82b8c4","gas":1000000,"gasPrice":0,"chainId":1}' \
-H "Content-Type: application/json" \
-X POST -s | jq
{

"data": "0x0001"
}

11.3 Submit Transaction

Send a SIGNED, NON-READONLY transaction. The client is left to compose a transaction, sign it and RLP encode
it. The resulting bytes, represented as a Hex string, are passed to this method to be forwarded to the EVM. This is a
SYNCHRONOUS operation; it waits for the transaction to go through consensus and returns the transaction receipt.

POST /rawtx
data: STRING Hex representation of the raw transaction bytes
returns: JSON JsonReceipt

type JsonTxRes struct {
TxHash string `json:"txHash"`

}

type JsonReceipt struct {
Root common.Hash `json:"root"`
TransactionHash common.Hash `json:"transactionHash"`
From common.Address `json:"from"`
To *common.Address `json:"to"`

(continues on next page)

28 Chapter 11. Monetd API

Monetd Documentation, Release 0

(continued from previous page)

GasUsed uint64 `json:"gasUsed"`
CumulativeGasUsed uint64 `json:"cumulativeGasUsed"`
ContractAddress common.Address `json:"contractAddress"`
Logs []*ethTypes.Log `json:"logs"`
LogsBloom ethTypes.Bloom `json:"logsBloom"`
Status uint64 `json:"status"`

}

Example:

host:~$ curl -X POST http://localhost:8080/rawtx -d
→˓'0xf8600180830f424094a10aae5609643848ff1bceb76172652261db1d6c648026a03c14b99e14420e34c15885ff3afc1043aa6e4e13e2be4691d74a772cde44819ba0652b202ab93908544ea4d7d89567fa462fa719f381e54aa6781ba96c2e9e0e90
→˓' -s | json_pp
{

"txHash":"0x96764078446cfbaec6265f173fb5a2411b7c272052640bca622252494a74dbb4"
}

11.4 Get Receipt

Get a transaction receipt. When a transaction is applied to the EVM, a receipt is saved to record if/how the transaction
affected the state. This contains such information as the address of a newly created contract, how much gas was use,
and the EVM Logs produced by the execution of the transaction.

GET /tx/{tx_hash}
returns: JSON JsonReceipt

Example:

host:~$ curl http://localhost:8080/tx/
→˓0x96764078446cfbaec6265f173fb5a2411b7c272052640bca622252494a74dbb4 -s | jq
{

"root": "0x348c230578e27e20a10924e925f7cddb28279561b52cab7b31750c6d4716ac21",
"transactionHash":

→˓"0x96764078446cfbaec6265f173fb5a2411b7c272052640bca622252494a74dbb4",
"from": "0xa10aae5609643848ff1bceb76172652261db1d6c",
"to": "0xa10aae5609643848ff1bceb76172652261db1d6c",
"gasUsed": 21000,
"cumulativeGasUsed": 21000,
"contractAddress": "0x00",
"logs": [],
"logsBloom":

→˓"0x00
→˓",
"status": 0

}

11.5 Info

Get information about a Babble instance.

GET /info
returns: JSON map

11.4. Get Receipt 29

Monetd Documentation, Release 0

Example:

host:-$ curl http://localhost:8080/info | jq
{

"rounds_per_second" : "0.00",
"type" : "babble",
"consensus_transactions" : "10",
"num_peers" : "4",
"consensus_events" : "10",
"sync_rate" : "1.00",
"transaction_pool" : "0",
"state" : "Babbling",
"events_per_second" : "0.00",
"undetermined_events" : "22",
"id" : "1785923847",
"last_consensus_round" : "1",
"last_block_index" : "0",
"round_events" : "0"

}

11.6 POA

Get details of the PoA smart-contract.

GET /poa
returns: JsonContract

type JsonContract struct {
Address common.Address `json:"address"`
ABI string `json:"abi"`

}

Example (trunctated output):

host:-$ curl http://localhost:8080/poa | jq
{

"address": "0xabbaabbaabbaabbaabbaabbaabbaabbaabbaabba",
"abi": "[\n\t{\n\t\t\"constant\": true,\n\t\t\"inputs\"...]"

}

11.7 Genesis.json

This endpoint returns the content of the genesis.json file in JSON format. This allows new nodes to pull the genesis
file from an existing peer.

GET /genesis
returns: JSON Genesis

type Genesis struct {
Alloc AccountMap
Poa PoaMap

}

(continues on next page)

30 Chapter 11. Monetd API

Monetd Documentation, Release 0

(continued from previous page)

type AccountMap map[string]struct {
Code string
Storage map[string]string
Balance string
Authorising bool

}

type PoaMap struct {
Address string
Balance string
Abi string
Code string

}

Example (truncated output):

host:-$ curl://http://locahost:8080/genesis | jq
{

"Alloc": {
"a10aae5609643848ff1bceb76172652261db1d6c": {

"Code": "",
"Storage": null,
"Balance": "1234567890000000000000",
"Authorising": false

}
},
"Poa": {
"Address": "0xaBBAABbaaBbAABbaABbAABbAABbaAbbaaBbaaBBa",
"Balance": "",
"Abi": "[\n\t{\n\t\t\"constant\": ...]",
"Code": "6080604052600436106101095..."

}
}

11.8 Block

Get a Babble Block by index.

GET /block/{index}
returns: JSON Block

type Block struct {
Body BlockBody
Signatures map[string]string

}

type BlockBody struct {
Index int
RoundReceived int
StateHash []byte
FrameHash []byte
PeersHash []byte
Transactions [][]byte

(continues on next page)

11.8. Block 31

Monetd Documentation, Release 0

(continued from previous page)

InternalTransactions []InternalTransaction
InternalTransactionReceipts []InternalTransactionReceipt

}

Example:

host:-$ curl http://locahost:8080/block/0 | jq
{

"Body": {
"Index": 0,
"RoundReceived": 1,
"StateHash": "VY6jFi7P5bIajdWvwZU2jU0q3KXDcp1sFx7Ye6kl1/k=",
"FrameHash": "Nek4dF0ybGZQ1XEuJQrjmPtNrfPLAtGU4sTQSSB2iKM=",
"PeersHash": "Gv+YqIq56l6LZWdhAsx0XEB4gjZluMaziv7hCXT5b9k=",
"Transactions": [

"+GSAgIMPQkCUq7qruqu6q7qruqu6q7qruqu6q7qAhOHHOSoloGCfTsLEOcMMXDX1W/
→˓78zpaZTXXK8BSR1Q8cCqicSrExoDv/0YGlpaGMJO8B6ZAJ/WAiEOKG00uzF8piaCvW3GHH"

],
"InternalTransactions": [],
"InternalTransactionReceipts": []

},
"Signatures": {

→˓"0X04F91D4429AE73229141F960B70CD2E83BF39D6EBF1B951C4E65BA9F0EE7FA2365C859CC9BF856709F78F0B9DD6BFBA450BFC7B8123197616D22E6EA8693201800
→˓":
→˓"2gtf6rkdc0q29n1isef0x2fib64qlf075uybtva6558r8onv31|2gnym6xat1ok68nqtsymcpg4x9ihj1ouwab8inode5m8eb82tb
→˓"
}

}

11.9 Current Peers

Get Babble’s current peer-set.

Get /peers
returns: []Peer

type Peer struct {
NetAddr string
PubKeyHex string
Moniker string

}

Example:

$host:-$ curl http://localhost:8080/peers | jq
[

{
"NetAddr": "192.168.1.3:1337",
"PubKeyHex":

→˓"0X04F91D4429AE73229141F960B70CD2E83BF39D6EBF1B951C4E65BA9F0EE7FA2365C859CC9BF856709F78F0B9DD6BFBA450BFC7B8123197616D22E6EA8693201800
→˓",

"Moniker": "node0"

(continues on next page)

32 Chapter 11. Monetd API

Monetd Documentation, Release 0

(continued from previous page)

}
]

11.10 Genesis Peers

Get Babble’s initial validator-set.

GET /genesispeers
returns: []Peer

11.10. Genesis Peers 33

Monetd Documentation, Release 0

34 Chapter 11. Monetd API

CHAPTER 12

POA Smart Contract

This document describes the requirements for a smart-contract to implement POA in a Monet Toolchain hub. The
default contract supplied with monetd already meets these requirements.

12.1 Solidity

12.1.1 Version

The first line of the contract is a pragma specifying the solidity version required. Currently this is set to greater than
or equal to 0.4.22.

pragma solidity >=0.4.22;

12.1.2 Constructor

The contract is embedded in the genesis block. This means that there is no conventional constructor. It is possible to
add a hook to payable function calls to set an initial state if it has not already been initialised.

12.1.3 Modifier

checkAuthorisedModifier is used to restrict access to payable functions. The internals of that function could
be ameneded to your new scheme.

12.1.4 CheckAuthorised

Babble calls the following function to verify whether a peer making a join request is authorised. Any replacement
smart-contract will need to implement this function.

35

Monetd Documentation, Release 0

function checkAuthorised(address _address) public view returns (bool)

12.1.5 Payable calls

Functions that the client tools expect to be present.

function submitNominee (address _nomineeAddress, bytes32 _moniker) public payable
→˓checkAuthorisedModifier(msg.sender)
function castNomineeVote(address _nomineeAddress, bool _accepted) public payable
→˓checkAuthorisedModifier(msg.sender) returns (bool decided, bool voteresult)

12.1.6 Decision Function

This function decides when a vote is complete. Currently it requires all people on the whitelist to approve. It is
anticipated that some form of majority voting would be implemented to prevent paralysis if a peer drops out.

function checkForNomineeVoteDecision(address _nomineeAddress) private returns (bool
→˓decided, bool voteresult)

12.1.7 Information Calls

The following information calls are available:

function getNomineeElection(address _address) public view returns (address nominee,
→˓address proposer, uint yesVotes, uint noVotes)
function getNomineeCount() public view returns (uint count)
function getNomineeAddressFromIdx(uint idx) public view returns (address
→˓NomineeAddress)
function getNomineeElectionFromIdx(uint idx) public view returns (address nominee,
→˓address proposer, uint yesVotes, uint noVotes)
function getCurrentNomineeVotes(address _address) public view returns (uint yes, uint
→˓no)
function getWhiteListCount() public view returns (uint count)
function getWhiteListAddressFromIdx(uint idx) public view returns (address
→˓WhiteListAddress)
function getYesVoteCount(address _nomineeAddress) public view returns (uint count)
function getYesVoterFromIdx(address _nomineeAddress, uint _idx) public view returns
→˓(address voter)
function getNoVoteCount(address _nomineeAddress) public view returns (uint count)
function getNoVoterFromIdx(address _nomineeAddress, uint _idx) public view returns
→˓(address voter)
function getMoniker(address _address) public view returns (bytes32 moniker)

12.1.8 Events

The following events are emitted by the smart contract. It is envisaged that the same events would be emitted by any
replacement contract.

36 Chapter 12. POA Smart Contract

Monetd Documentation, Release 0

/// @notice Event emitted when the vote was reached a decision
/// @param _nominee The address of the nominee
/// @param _yesVotes The total number of yes votes cast for the nominee to date
/// @param _noVotes The total number of no votes cast for the nominee to date
/// @param _accepted The decision, true for added to the whitelist, false for rejected

event NomineeDecision(
address indexed _nominee,
uint _yesVotes,
uint _noVotes,
bool indexed _accepted

);

/// @notice Event emitted when a nominee vote is cast
/// @param _nominee The address of the nominee
/// @param _voter The address of the person who cast the vote
/// @param _yesVotes The total number of yes votes cast for the nominee to date
/// @param _noVotes The total number of no votes cast for the nominee to date
/// @param _accepted The vote, true for accept, false for rejected

event NomineeVoteCast(
address indexed _nominee,
address indexed _voter,
uint _yesVotes,
uint _noVotes,
bool indexed _accepted

);

/// @notice Event emitted when a nominee is proposed
/// @param _nominee The address of the nominee
/// @param _proposer The address of the person who proposed the nominee

event NomineeProposed(
address indexed _nominee,
address indexed _proposer

);

/// @notice Event emitted to announce a moniker
/// @param _address The address of the user
/// @param _moniker The moniker of the user

event MonikerAnnounce(
address indexed _address,
bytes32 indexed _moniker

);

12.2 Generated Genesis Whitelist Section

The template contract has a block of code delimited by the commments //GENERATED GENESIS BEGIN and
//GENERATED GENESIS END. In the monetd config build command that block of code is replaced with
generated code. That code is customised to include the initial authorised peers list in the genesis block.

A sample generated block is included below.

//GENERATED GENESIS BEGIN

address constant initWhitelist0 = 0xDc3062F7E88C456c2aD6EeaAc2D6Da4034F6CD7C;
bytes32 constant initWhitelistMoniker0 = "node0";

(continues on next page)

12.2. Generated Genesis Whitelist Section 37

Monetd Documentation, Release 0

(continued from previous page)

address constant initWhitelist1 = 0xdB77c5DBb8c39a82F131252853000E8691a772E1;
bytes32 constant initWhitelistMoniker1 = "node1";
address constant initWhitelist2 = 0xe9fa241921dF673E932B173C1a41bc532Db4C330;
bytes32 constant initWhitelistMoniker2 = "node2";

function processGenesisWhitelist() private
{
addToWhitelist(initWhitelist0, initWhitelistMoniker0);
addToWhitelist(initWhitelist1, initWhitelistMoniker1);
addToWhitelist(initWhitelist2, initWhitelistMoniker2);

}

function isGenesisWhitelisted(address _address) pure private returns (bool)
{

return ((initWhitelist0 == _address) || (initWhitelist1 == _address) ||
→˓(initWhitelist2 == _address));

}

//GENERATED GENESIS END

The following functions must be defined in the generated block as they are referenced in the non-generated code.

function processGenesisWhitelist() private
function isGenesisWhitelisted(address _address) pure private returns (bool)

38 Chapter 12. POA Smart Contract

CHAPTER 13

Giverny Examples

For reference, the options for giverny network new:

[..monetd] $ giverny help network new

giverny network build

Usage:
giverny network new [network_name] [flags]

Flags:
--generate-pass generate pass phrases

-h, --help help for new
--initial-ip string initial IP address of range
--initial-peers int number of initial peers
--names string filename of a file containing a list of node monikers
--no-build disables the automatic build of a new network
--no-save-pass don't save pass phrase entered on command line

-n, --nodes int number of nodes in this configuration (default -1)
--pass string filename of a file containing a passphrase

Global Flags:
-g, --giverny-data-dir string Top-level giverny directory for configuration and

→˓data (default "/home/jon/.giverny")
-m, --monet-data-dir string Top-level monetd directory for configuration and

→˓data (default "/home/jon/.monet")
-v, --verbose verbose messages

13.1 Development Test Networks

To make commands repeatable, and to reflect code changes, the following commands can be prefixed to all the com-
mands below:

make installgiv; rm -rf ~/.giverny/networks/test9;

39

Monetd Documentation, Release 0

The command above rebuilds the giverny app and removes the network test9``allow the ``new com-
mands to be run repeatedly. If you do not remove the previous network test9 before running giverny network
new then the command aborts. The make installgiv is only required if you are making code changes.

Adding -v or --verbose to each of these commands gives addition information and progress messages in the
command output.

13.1.1 New

8 node network, 4 initial peers, named from prebaked list of names, generated passphrases.

giverny network new test9 --generate-pass --names sampledata/names.txt --nodes 8 --
→˓initial-peers 4 -v

3 node network with named nodes, 2 initial peers. Passphrased prompted for on the command line and used for all key
files.

make installgiv; rm -rf ~/.giverny/networks/test9; giverny network new test9 --save-
→˓pass --names sampledata/withnodes.txt --nodes 3 --initial-peers 2 -v

The withnodes.txt file is interesting as it shows the expanded syntax:

Jon,192.168.1.18,1T,true
Martin,192.168.1.3,1G,true
Kevin,192.168.1.16,1M,false

13.1.2 Export Network

The export command writes the configuration of one or more nodes to a zip file.

To export the configuration of all nodes in a network, type this:

$ giverny network export test9

Take a look in ~/.giverny/exports.1 There should be numerous files named test9_[node].zip. These
can be applied to monetd directly on the same instance by:

$ giverny network import test9 Danu --from-exports

Alternatively you can use a secondary channel such as slack or e-mail to send that zip file and then load it — without
changing the name of the file:

$ giverny network import test9 Danu --dir ~/Downloads

Or you can use giverny server and pull it directly. Assuming that you have run giverny server start on the
instance you ran the exports you can:

$ giverny network import test9 Danu --server 192.168.1.4

1 This location is for Linux instances. Mac and Windows uses a different path. The path for your instance can be ascertain with this command:
giverny network location

40 Chapter 13. Giverny Examples

CHAPTER 14

Monetd Configuration

All the configuration required to run a node is stored under a directory with a very specific structure. By default,
monetd will look for this directory in $HOME/.monet1 (on Linux), but it is possible to override this with the
--datadir flag.

The directory must respect the following stucture:

host:~/.monet$ tree
babble

peers.genesis.json
peers.json
priv_key

eth
genesis.json
poa

compile.toml
contract0.abi
contract0.sol

keystore
node0.json

monetd.toml

You would not normally need to access these configuration files directly. The monetd config tool provides a
CLI interfaces to set up a network. The command monetd config location --expanded provides further
details of the filepaths used for your instance.

14.1 Eth

The eth/genesis.json file defines prefunded accounts in the state, as well as the POA smart-contract. This file
is useful to predefine a set of accounts that own all the initial tokens at the inception of the network. In addition, the
poa section contains information about the POA smart-contract.

1 This location is for Linux instances. Mac and Windows uses a different path. The path for your instance can be ascertain with this command:
monetd config location

41

Monetd Documentation, Release 0

Example genesis.json defining one prefunded account (the ABI and bytecode of the smart-contract have been
truncated):

{
"alloc": {

"a10aae5609643848ff1bceb76172652261db1d6c": {
"balance": "1234567890000000000000",
"moniker": "node0"

}
},
"poa": {

"address": "0xaBBAABbaaBbAABbaABbAABbAABbaAbbaaBbaaBBa",
"abi": "[\n\t{\n\t\t\"constant\": true, ...]",
"code": "6080604052600436106101095760003560e01c8063..."
}

}

14.2 Babble

• babble/genesis.peers.json: defines Babble’s initial peer-set.

• babble/peers.json: defines Babble’s current peer-set

• babble/priv_key: contains the validator’s private key for Babble.

14.3 Run Options

Options pertaining to the operation of the node are read from the [datadir]/monetd.toml file, or overwritten by the
following flags. It is envisaged that you would not need to use these flags in a production environment.

Flags:
--api-listen string IP:PORT of HTTP API service (default ":8080")
--babble.bootstrap bootstrap Babble from database
--babble.cache-size int number of items in LRU caches (default 50000)
--babble.heartbeat duration heartbeat timer milliseconds (time between gossips)

→˓(default 200ms)
--babble.listen string IP:PORT of Babble node (default "192.168.1.3:1337")
--babble.max-pool int max number of pool connections (default 2)
--babble.sync-limit int max number of Events per sync (default 1000)
--babble.timeout duration TCP timeout milliseconds (default 1s)
--eth.cache int megabytes of memory allocated to internal caching

→˓(min 16MB / database forced) (default 128)
--eth.min-gas-price string minimum gasprice of transactions submitted through

→˓this node (ex 1K, 1M, 1G, etc.) (default "0")
-h, --help help for run

Global Flags:
-d, --datadir string top-level directory for configuration and data (default "/

→˓home/martin/.monet")
-v, --verbose verbose output

Example of a monet.toml file:

42 Chapter 14. Monetd Configuration

Monetd Documentation, Release 0

datadir = "/home/user/.monet"
verbose = "false"
api-listen = ":8080"

[babble]
listen = "192.168.1.3:1337"
heartbeat = "500ms"
timeout = "1s"
cache-size = 50000
sync-limit = 1000
max-pool = 2
bootstrap = false

[eth]
cache = 128

14.3. Run Options 43

Monetd Documentation, Release 0

44 Chapter 14. Monetd Configuration

CHAPTER 15

Monetd Reference

monetd provides the core commands needed to configure and run a node. It has context sensitive help accessed either
by running monetd help or by adding a -h parameter to the relevant command.

[..monetd] $ monetd help
MONET-Daemon

Monetd provides the core commands needed to configure and run a Monet
node. The minimal quickstart configuration is:

$ monetd config clear
$ monetd keys new node0
$ monetd config build node0
$ monetd run

See the documentation at https://monetd.readthedocs.io/ for further information.

Usage:
monetd [command]

Available Commands:
config manage monetd configuration
help Help about any command
keys monet key manager
run run a MONET node
version show version info

Flags:
-d, --datadir string top-level directory for configuration and data (default "/

→˓home/jon/.monet")
-h, --help help for monetd
-v, --verbose verbose output

Use "monetd [command] --help" for more information about a command.

There are 5 subcommands. help is described above. The other 4 commands are described in separate sections below:

45

Monetd Documentation, Release 0

• help — show help for the command and subcommands

• version — shows the current version of monetd and subsystems

• keys — creates and manages keys

• config — creates and manages configurations

• run — runs the monet daemon, i.e. starts a node

15.1 Global Parameters

Global Parameters are available for all subcommands.

• -d, –datadir string — overrides the default location of the configuration files

• -h, –help — help command as discussed above

• -v, –verbose — turns on verbose messages. Defaults to false.

15.2 Version

The version subcommand outputs the version number for monetd, EVM-Lite, Babble and Geth.

If you compile your own tools, the suffices are the GIT branch and the GIT commit hash.

[..monetd] $ monetd version
Monet Version: 0.2.1-develop-397c075f

EVM-Lite Version: 0.2.1-develop
Babble Version: 0.5.1-develop
Geth Version: 1.8.27

15.3 Keys

The keys subcommand is used to manage Monet Toolchain keys. There are 4 subcommands, each described in a
seperate section below:

• inspect — inspect a keyfile

• list — list keyfiles

• new — create a new keyfile

• update — change the passphrase on a keyfile

The keys subcommand writes and reads keys from the keystore sub-folder in the monetd configuration folder.
You can see the location for your instance with this command:

$ monetd config location -x

The help for the keys command is:

[..monetd] $ monetd keys help

Manage keys in the [datadir]/keystore folder.

(continues on next page)

46 Chapter 15. Monetd Reference

Monetd Documentation, Release 0

(continued from previous page)

Note that other Monet tools, like monetcli and monet-wallet, use the same
default [datadir]/keystore.

+--+
| Please take all the necessary precautions to secure these files and remember |
| the passwords, as it will be impossible to recover the keys without them. |
+--+

Keys are associated with monikers and encrypted in password-protected files in
[datadir]/keystore/[moniker].json. Keyfiles contain JSON encoded objects, which
Ethereum users will recognise as the de-facto Ethereum keyfile format. Indeed,
Monet and the underlying consensus algorithm, Babble, use the same type of keys
as Ethereum. A key can be used to run a validator node, or to control an account
with a token balance.

Usage:
monetd keys [command]

Available Commands:
inspect inspect a keyfile
list list keyfiles
new create a new keyfile
update change the passphrase on a keyfile

Flags:
-h, --help help for keys

--json output JSON instead of human-readable format
--passfile string file containing the passphrase

Global Flags:
-d, --datadir string top-level directory for configuration and data (default "/

→˓home/jon/.monet")
-v, --verbose verbose output

Use "monetd keys [command] --help" for more information about a command.

15.3.1 Parameters

All of the keys subcommands support the --passfile flag. This allows you to pass the path to a plain text file
containing the passphrase for your key. This removes the interactive prompt to enter the passphrase that is the default
mechanism.

15.3.2 Monikers

Keys generated by monetd have a moniker associated with them. The moniker is used to manage the keys as it is far
more user friendly that an Ethereum address or public key.

15.3.3 New

The new subcommand generates a new key pair and associates it with the specified moniker. You will be prompted
for a passphrase which is used to encrypt the keyfile. It writes the encrypted keyfile to the monetd keystore area

15.3. Keys 47

Monetd Documentation, Release 0

by default. The moniker must be unique within your keystore. If you attempt to create a duplicate, the command will
abort with an error.

[..monetd] $ monetd help keys new

Generate a new cryptographic key-pair identified by [moniker].

If the --passfile flag is not specified, the user will be prompted to enter the
passphrase manually.

Usage:
monetd keys new [moniker] [flags]

Flags:
-h, --help help for new

Global Flags:
-d, --datadir string top-level directory for configuration and data (default "/

→˓home/jon/.monet")
--json output JSON instead of human-readable format
--passfile string file containing the passphrase

-v, --verbose verbose output

15.3.4 Inspect

[..monetd] $ monetd help keys display

Manage keys in the [datadir]/keystore folder.

Note that other Monet tools, like monetcli and monet-wallet, use the same
default [datadir]/keystore.

+--+
| Please take all the necessary precautions to secure these files and remember |
| the passwords, as it will be impossible to recover the keys without them. |
+--+

Keys are associated with monikers and encrypted in password-protected files in
[datadir]/keystore/[moniker].json. Keyfiles contain JSON encoded objects, which
Ethereum users will recognise as the de-facto Ethereum keyfile format. Indeed,
Monet and the underlying consensus algorithm, Babble, use the same type of keys
as Ethereum. A key can be used to run a validator node, or to control an account
with a token balance.

Usage:
monetd keys [command]

Available Commands:
inspect inspect a keyfile
list list keyfiles
new create a new keyfile
update change the passphrase on a keyfile

Flags:
-h, --help help for keys

--json output JSON instead of human-readable format

(continues on next page)

48 Chapter 15. Monetd Reference

Monetd Documentation, Release 0

(continued from previous page)

--passfile string file containing the passphrase

Global Flags:
-d, --datadir string top-level directory for configuration and data (default "/

→˓home/jon/.monet")
-v, --verbose verbose output

Use "monetd keys [command] --help" for more information about a command.

A sample session showing the command usage with and without the --private parameter.

$ monetd keys inspect node0 --private
Passphrase:
Address: 0x02f6f3D24E447218d396C14F3B47f9Ea369DADf9
Public key:
→˓0481d3528eec6138f8428932e4fe99571a4f77bd79ae13219540b0a929014cb490a4e5ced2f9e651b531522c2567b6dc5de75d485193615e768b8aa1190603d2c2
Private key: bc553aaa7e55c5d0f58f6897ba9bffdb88233c420da622d363f2fe4bd6d78df1

$ monetd keys inspect node0
Passphrase:
Address: 0x02f6f3D24E447218d396C14F3B47f9Ea369DADf9
Public key:
→˓0481d3528eec6138f8428932e4fe99571a4f77bd79ae13219540b0a929014cb490a4e5ced2f9e651b531522c2567b6dc5de75d485193615e768b8aa1190603d2c2

15.3.5 Update

The update subcommand allows you to change the passphrase for an encrypted key file. You are prompted for the
old passphrase, then you need to enter, and confirm, the new passphrase.

You can suppress the prompts by specifying the --passfile parameter to supply the current passphrase and
--new-passphrase to supply the new passphrase.

[..monetd] $ monetd help keys update
change the passphrase on a keyfile

Usage:
monetd keys update [moniker] [flags]

Flags:
-h, --help help for update

--new-passfile string the file containing the new passphrase

Global Flags:
-d, --datadir string top-level directory for configuration and data (default "/

→˓home/jon/.monet")
--json output JSON instead of human-readable format
--passfile string file containing the passphrase

-v, --verbose verbose output

An example session updating the passphrase for a key:

$ monetd keys update node0
Passphrase:
Please provide a new passphrase

(continues on next page)

15.3. Keys 49

Monetd Documentation, Release 0

(continued from previous page)

Passphrase:
Repeat passphrase:

15.3.6 List

The list subcommand outputs a list of monikers corresponding to the keyfiles in the keystore. These are the valid
monikers that can be specified to other monetd commands.

[..monetd] $ monetd help keys list
list keyfiles

Usage:
monetd keys list [flags]

Flags:
-h, --help help for list

Global Flags:
-d, --datadir string top-level directory for configuration and data (default "/

→˓home/jon/.monet")
--json output JSON instead of human-readable format
--passfile string file containing the passphrase

-v, --verbose verbose output

An example session:

$ monetd keys list
node0
node1
node2

15.4 Config

The config subcommand initialises the configuration for a monetd node. The folder can be overridden by the
--datadir parameter. The configuration commands create all the files necessary for a node to join an existing
network or to create a new one.

There are 5 subcommands each described in a separate section below:

• clear — backup and clear configuration folder

• contract — display poa contract

• location — show the location of the configuration files

• build — create the configuration for a single-node network

• pull — pull the configuration files from a node

The two most common scenarios are:

• config build - config build creates the configuration for a single-node network, based on one of the keys in
[datadir]/keystore. This is a quick and easy way to get started with monetd. See Getting Started.

• config pull - config pull is used to join an existing network. It fetches the configuration from one of the ex-
isting nodes. See Joining a Network.

50 Chapter 15. Monetd Reference

Monetd Documentation, Release 0

For more complex scenarios, please refer to Giverny Reference, which is a specialised Monet Toolchain configuration
tool.

15.4.1 Clear

The clear subcommand safely clears any previous monetd configurations. It renames the previous configuration
with a .~n~ suffix, where n is the lowest integer where the resultant filename does not already exist.

The configurations are renamed and not deleted to avoid the potential for inadvertent deletion of keys.

$ monetd config clear
Renaming /home/user/.monet to /home/user/.monet.~1~

15.4.2 Contract

The contract subcommand generates the Solidity source for a POA smart contract with the supplied node as the
sole entry on the initial whitelist. This command is not used in the standard workflow, but is provided as a convenient
mechanism to retrieve the solidity source.

[..monetd] $ monetd help config contract

monetd config contract

Outputs the standard monetd contract, configured with [moniker] as the initial
whitelist.

Usage:
monetd config contract [moniker] [flags]

Flags:
-h, --help help for contract

Global Flags:
-d, --datadir string top-level directory for configuration and data (default "/

→˓home/jon/.monet")
-v, --verbose verbose output

A sample session is as follows. The contract is written to stdout, so you will probably wish to redirect it to a file or a
pager.

$ monetd config contract node0 | more
pragma solidity >=0.4.22;

/// @title Proof of Authority Whitelist Contract

...

15.4.3 Location

The location subcommand displays the path to the configuration folder. With the --expanded parameter, a list
of directories and configuration files are output.

15.4. Config 51

Monetd Documentation, Release 0

[..monetd] $ monetd help config location

The location subcommand shows the location of the monetd configuration files. It
respects any --datadir parameter.

If you specify --expanded then a list of configuration folders and directories
is output.

Usage:
monetd config location [flags]

Flags:
-x, --expanded show expanded information
-h, --help help for location

Global Flags:
-d, --datadir string top-level directory for configuration and data (default "/

→˓home/jon/.monet")
-v, --verbose verbose output

$ monetd config location
/home/user/.monet

$ monetd config location --expanded
Config root : /home/user/.monet
Babble Dir : /home/user/.monet/babble
EVM-Lite Dir : /home/user/.monet/eth
Keystore Dir : /home/user/.monet/keystore
Config File : /home/user/.monet/monet.toml
Wallet Config : /home/user/.monet/wallet.toml
Peers : /home/user/.monet/babble/peers.json
Genesis Peers : /home/user/.monet/babble/peers.genesis.json
Genesis File : /home/user/.monet/eth/genesis.json

15.4.4 Build

The build subcommand initialises the bare-bones configuration to start monetd. It uses one of the accounts from
the keystore to define a network consisting of a unique node, which is automatically added to the PoA whitelist.
Additionally, all the accounts in [datadir]/keystore are credited with a large amount of tokens in the genesis file. This
command is mostly used for testing.

If the --address flag is omitted, the first non-loopback address for this instance is used.

[..monetd] $ monetd help config build

The build subcommand initialises the bare-bones configuration to get started
with monetd. It uses one of the accounts from the keystore to define a network
consisting of a unique node, which is automatically added to the PoA whitelist.
Additionally, all the accounts in [datadir]/keystore are credited with a large
amount of tokens in the genesis file. This command is mostly used for testing.

If the --address flag is omitted, the first non-loopback address for this
instance is used.

Usage:

(continues on next page)

52 Chapter 15. Monetd Reference

Monetd Documentation, Release 0

(continued from previous page)

monetd config build [moniker] [flags]

Flags:
--address string IP/hostname of this node (default "172.17.0.1")

-h, --help help for build
--passfile string file containing the passphrase

Global Flags:
-d, --datadir string top-level directory for configuration and data (default "/

→˓home/jon/.monet")
-v, --verbose verbose output

15.4.5 Pull

The pull subcommand is used to join an existing network. It takes the address of a running peer, and downloads the
following set of files into the configuration directory [datadir]:

• babble/peers.json : The current validator-set

• babble/peers.genesis.json : The initial validator-set

• eth/genesis.json : The genesis file

It also builds all the other configuration files required to run a monetd node. If the peer specified does not include a
port, the default gossip port (1337) is used.

[..monetd] $ monetd help config pull

The pull subcommand is used to join an existing Monet network. It takes the
address (host:port) of a running node, and downloads the following set of files
into the configuration directory [datadir]:

- babble/peers.json : The current validator-set
- babble/peers.genesis.json : The initial validator-set
- eth/genesis.json : The genesis file

Additionally, this command configures the validator-key and the network address
of the new node. The --key and --passfile options refer to the validator-key,
while --address sets the network address of monetd.

Usage:
monetd config pull [host:port] [flags]

Examples:
monetd config pull "192.168.5.1:8080"

Flags:
--address string IP/hostname of this node (default "172.17.0.1")

-h, --help help for pull
--key string moniker of the key to use for this node (default "Jon")
--passfile string file containing the passphrase

Global Flags:
-d, --datadir string top-level directory for configuration and data (default "/

→˓home/jon/.monet")
-v, --verbose verbose output

15.4. Config 53

Monetd Documentation, Release 0

15.5 Run

The run subcommands starts the monetd node running. Whilst there are legacy parameters --babble.* and
--eth.*, we strongly recommend that they are not used. The equivalent changes can be made in the configuration
files.

[..monetd] $ monetd help run

Run a MONET node.

Start a daemon which acts as a full node on a MONET network. All data and
configuration are stored under a directory [datadir] controlled by the
--datadir flag ($HOME/.monet by default on UNIX systems).

[datadir] must contain a set of files defining the network that this node is
attempting to join or create. Please refer to monetd config for tools to manage
this configuration.

Further options pertaining to the operation of the node are read from the
[datadir]/monetd.toml file, or overwritten by the following flags. The following
command displays the expected output:

monetd config location

Usage:
monetd run [flags]

Flags:
--api-listen string IP:PORT of Monet HTTP API service (default ":8080

→˓")
--babble.bootstrap Bootstrap Babble from database
--babble.cache-size int Number of items in LRU caches (default 50000)
--babble.heartbeat duration Heartbeat time milliseconds (time between

→˓gossips) (default 200ms)
--babble.listen string IP:PORT of Babble node (default "172.17.0.1:1337")
--babble.max-pool int Max number of pool connections (default 2)
--babble.sync-limit int Max number of Events per sync (default 1000)
--babble.timeout duration TCP timeout milliseconds (default 1s)
--eth.cache int Megabytes of memory allocated to internal caching

→˓(min 16MB / database forced) (default 128)
-h, --help help for run

Global Flags:
-d, --datadir string top-level directory for configuration and data (default "/

→˓home/jon/.monet")
-v, --verbose verbose output

54 Chapter 15. Monetd Reference

CHAPTER 16

Giverny Reference

giverny is the advanced configuration tool for the Monet Toolchain.

The current subcommands are:

• help — help

• version — outputs version information

• keys — key management tools

• server — configuration server management

• network — configure and build networks

• transactions — generate test transactions sets

16.1 Global Flag

The --verbose flag, or -v for short, turns on extended messages for each giverny command.

16.2 Help

giverny has context sensitive help accessed either by running giverny help or by adding a -h parameter to the
relevant command.

16.3 Version

The version subcommand outputs the version number for monetd, EVM-Lite, Babble and Geth.

If you compile your own tools, the suffices are the GIT branch and the GIT commit hash.

55

Monetd Documentation, Release 0

[..monetd] $ giverny version
Monet Version: 0.2.1-develop-397c075f

EVM-Lite Version: 0.2.1-develop
Babble Version: 0.5.1-develop
Geth Version: 1.8.27

16.4 Keys

The keys subcommand offers tools to manage keys.

16.4.1 Keys Flags

In addition to the --verbose flag, the keys subcommand defines addtional flags as follows:

Global Flags:
-g, --giverny-data-dir string Top-level giverny directory for configuration and

→˓data (default "/home/jon/.giverny")
-m, --monet-data-dir string Top-level monetd directory for configuration and

→˓data (default "/home/jon/.monet")
-v, --verbose verbose messages

Use "giverny keys [command] --help" for more information about a command.

16.4.2 Import

The import subcommand is used to import a pre-existing private key into the monetd keystore, creating the asso-
ciated toml file, assigning a moniker and setting a passphrase.

[..monetd] $ giverny help keys import

Import keys to [moniker] from private key file [keyfile].

Usage:
giverny keys import [moniker] [keyfile] [flags]

Flags:
-h, --help help for import

Global Flags:
-g, --giverny-data-dir string Top-level giverny directory for configuration and

→˓data (default "/home/jon/.giverny")
--json output JSON instead of human-readable format

-m, --monet-data-dir string Top-level monetd directory for configuration and
→˓data (default "/home/jon/.monet")

--passfile string the file that contains the passphrase for the
→˓keyfile
-v, --verbose verbose messages

56 Chapter 16. Giverny Reference

Monetd Documentation, Release 0

16.5 Server

The server subcommand is used for adminstering a REST server used to co-ordinate configurations between multi-
ple nodes prior to the initial node of a network.

The server listens on port 8088. It writes logs to ~/.giverny/server/server.pid.1

For usage examples, see the recipes for setting up networks.

16.5.1 Start

To start the server in the foreground:

$ giverny server start

To start the server in the background:

$ giverny server start --background

16.5.2 Stop

To stop a server running in the background:

$ giverny server stop

16.5.3 Status

Reports on the status of the server. It both checks for the PID file in ~/.giverny/server/server.pid1 and
checks the the server is responding on localhost:8088.

$ giverny server status

16.6 Network

The network command is used to build complex monet networks. The new command generates the nodes and
keys for a network, and automatically calls the build command which generates and builds genesis.json and
peers.json files. You can adjust the network by editting the network.toml file. The location command
outputs the relevant paths. The push command is used to push a giverny network node configuration to a docker or
actual node so it can be used by monetd. start, stop and status are used to manage the docker instance.

The network name and node names must contain only standard letters (i.e. no accented versions), digits (0–9) or
underscores (_).

1 This location is for Linux instances. Mac and Windows uses a different path. The path for your instance can be ascertain with this command:
giverny network location

16.5. Server 57

Monetd Documentation, Release 0

16.6.1 Location

The giverny network location subcommand takes a single optional parameter network_name. If the
network is specified it outputs the location of key files and folders for that network. If not, only the root giverny
configuration folder is output.

Example without a network name:

$ giverny network location
/home/user/.giverny

Example with a network specified:

$ giverny network location node7
Network : node7
Giverny Config Dir : /home/user/.giverny
Giverny Networks Dir : /home/user/.giverny/networks/node7
Giverny KeyStore Dir : /home/user/.giverny/networks/node7/keystore
Peers JSON : /home/user/.giverny/networks/node7/peers.json
Genesis JSON : /home/user/.giverny/networks/node7/genesis.json
Monetd TOML : /home/user/.giverny/networks/node7/monetd.toml
Network TOML : /home/user/.giverny/networks/node7/network.toml

16.6.2 New

The new subcommand creates a new test network configuration. It also

Syntax

[..monetd] $ giverny help network new

giverny network build

Usage:
giverny network new [network_name] [flags]

Flags:
--generate-pass generate pass phrases

-h, --help help for new
--initial-ip string initial IP address of range
--initial-peers int number of initial peers
--names string filename of a file containing a list of node monikers
--no-build disables the automatic build of a new network
--no-save-pass don't save pass phrase entered on command line

-n, --nodes int number of nodes in this configuration (default -1)
--pass string filename of a file containing a passphrase

Global Flags:
-g, --giverny-data-dir string Top-level giverny directory for configuration and

→˓data (default "/home/jon/.giverny")
-m, --monet-data-dir string Top-level monetd directory for configuration and

→˓data (default "/home/jon/.monet")
-v, --verbose verbose messages

58 Chapter 16. Giverny Reference

Monetd Documentation, Release 0

Nodes

The number of nodes in this network is specified by the --nodes [int] parameter. The --initial-peers
[int] parameter specifies the number of initial peers. If not set it assumes that all nodes are in the initial peer set.

IP Addresses

An initial IP address is supplied using the --initial-ip parameter. It is assumed the IP address range will be
assigned by simply incrementing the last octet of the IP address for each node. N.B. the first node will be assigned the
actual IP supplied by the initial-ip parameter.

Node Names

The default node names are a standard prefix of node with a unique integer suffix. You can override the default and
supply a list of node names, which are used in the order supplied, via the --names parameter.

Node names must contain only standard Latin alphabet characters (ie a–z or A–Z with no accents), underscores (_), or
digits (0–9).

Pass Phrases

There are numerous pass phrase flags for the new subcommand.

• --pass [passfile] — uses the given pass phrase file for all nodes

• --generate-pass — generates a unique passphrase for each key pair and writes it to a file nodename.txt in
the network configuration keystore directory

• --save-pass — saves pass phrases in the network configuration keystore directory

The typical use case scenarios for these flags would be:

• None specified — you are prompted to enter the passphrase for each node which is not saved

• --pass only — the specified pass phrase is used, but not saved in the config folder

• --pass and --save-pass — the specified pass phrase is used and saved in the config folder

• --generate-pass only — pass phrases are generated and saved

• --save-pass only — you are prompted to enter the passphrase for each node, which is saved in the config
folder

Build

By default giverny network new will run giverny network build automatically. This can be disabled
by specifying the -no-build flag.

Examples

An example of the new subcommand:

$ giverny network new test11 --names sampledata/names.txt --nodes 7 --pass sampledata/
→˓pwd.txt --initial-peers 3 --initial-ip 192.168.1.19

16.6. Network 59

Monetd Documentation, Release 0

16.6.3 Build

The giverny network build subcommand takes a configuration created by the new subcommand and builds
peers.json and genesis.json files.

build can be run repeatably safely. It is envisaged that users will edit the network.toml file to adjust token
allocations or change addresses.

--no-generate-keys disables the creation of any keys not already in the keystore.

A “built” network will have a file structure like this:

test7
compile.toml
contract0.abi
contract0.sol
genesis.json
keystore

Amelia.json
Amelia.txt
Becky.json
Becky.txt
Chloe.json
Chloe.txt
Danu.json
Danu.txt

monetd.toml
network.toml
peers.json

16.6.4 Export

The export subcommand takes a configuration that has been generated and exports it to the exports subfolder of
the giverny configuration folders as a zip file. The network export command has a mandatory network name
parameter, and optionally one or more node names. If the node names are omitted, all of the nodes for that network
are exported.

16.6.5 Import

The import subcommand takes a configuration previously exported by the export and configures monetd to use
the new configuration. You will always need to specify a network name and a node name for the import. The source
for the import can be configured thus:

• --from-exports — from the exports subfolder in the giverny configuration folders. This is the default
output location for the export command.

• --server — from a giverny server. The giverny server will look in the exports subfolder in the giverny
configuration folders on the instance it is running on. N.B. do not run the giverny server on any instance with
live key pairs or sensitive configuration, as it may be exposed.

• --dir — specify the folder the export zip is in. Do not rename the zip file. This is used when a secondary
channel is used to communicate the keys.

60 Chapter 16. Giverny Reference

Monetd Documentation, Release 0

16.7 Transactions

The transaction commands has one subcommand: generate. It is used to generate transactions set for end to end
testing of networks.

The following flags can be set:

--count int number of tranactions to generate (default 20)
--faucet string faucet account moniker (default "Faucet")

-h, --help help for generate
--ips string ips.dat file path

-n, --network string network name
--surplus int additional credit to allocate each account from the faucet

→˓above the bare minimum (default 1000000)

16.7. Transactions 61

Monetd Documentation, Release 0

62 Chapter 16. Giverny Reference

CHAPTER 17

Licences

The Monet Toolchain is an open source project, licensed under the MIT License (TLDR version). The software is
provided as-is and we are not liable. We use many other libraries to build the Toolchain. This section presents the
output of Glice for the Monet Toolchain. Glice reports on the licences used within a golang project.

The 3 tables are for the monetd, EVM-Lite and Babble repositories respectively. These tables are the output from
glice -r, which only looks one level deep. These tables are for information only and are not legal advice.

monetd:

63

https://opensource.org/licenses/MIT
https://tldrlegal.com/license/mit-license
https://github.com/ribice/glice
https://github.com/mosaicnetworks/monetd
https://github.com/mosaicnetworks/evm-lite
https://github.com/mosaicnetworks/babble

Monetd Documentation, Release 0

DEPENDENCY REPOURL LI-
CENSE

github.com/AndreasBriese/bbloom
github.com/btcsuite/btcd
github.com/dgraph-io/badger
github.com/dgryski/go-farm
github.com/docker/docker
github.com/ethereum/go-
ethereum github.com/fatih/color
github.com/fsnotify/fsnotify
github.com/golang/protobuf
github.com/gorilla/mux
github.com/hashicorp/hcl
github.com/magiconair/properties
github.com/mattn/go-colorable
github.com/mattn/go-isatty
github.com/mgutz/ansi
github.com/mitchellh/mapstructure
github.com/mosaicnetworks/babble
github.com/mosaicnetworks/evm-
lite github.com/pelletier/go-
toml github.com/pkg/errors
github.com/sirupsen/logrus
github.com/spf13/afero
github.com/spf13/cast
github.com/spf13/cobra
github.com/spf13/jwalterweatherman
github.com/spf13/pflag
github.com/spf13/viper
github.com/ugorji/go github.com/x-
cray/logrus-prefixed-formatter
golang.org/x/crypto/ssh/terminal
golang.org/x/net/internal/timeseries
golang.org/x/net/trace
golang.org/x/sys/unix
golang.org/x/text/transform
golang.org/x/text/unicode/norm
gopkg.in/yaml.v2

https://github.com/AndreasBriese/bbloom
https://github.com/btcsuite/btcd https:
//github.com/dgraph-io/badger https://github.
com/dgryski/go-farm https://github.com/
docker/docker https://github.com/ethereum/
go-ethereum https://github.com/fatih/color
https://github.com/fsnotify/fsnotify https://
github.com/golang/protobuf https://github.com/
gorilla/mux https://github.com/hashicorp/hcl
https://github.com/magiconair/properties
https://github.com/mattn/go-colorable
https://github.com/mattn/go-isatty
https://github.com/mgutz/ansi https:
//github.com/mitchellh/mapstructure
https://github.com/mosaicnetworks/babble
https://github.com/mosaicnetworks/evm-lite
https://github.com/pelletier/go-toml
https://github.com/pkg/errors https:
//github.com/sirupsen/logrus https://github.
com/spf13/afero https://github.com/spf13/cast
https://github.com/spf13/cobra https:
//github.com/spf13/jwalterweatherman https:
//github.com/spf13/pflag https://github.com/
spf13/viper https://github.com/ugorji/go https:
//github.com/x-cray/logrus-prefixed-formatter
https://go.googlesource.com/crypto
https://go.googlesource.com/net https://go.
googlesource.com/net https://go.googlesource.
com/sys https://go.googlesource.com/text
https://go.googlesource.com/text

Other
isc
Apache-
2.0
Other
Apache-
2.0
LGPL-
3.0 MIT
bsd-3-
clause
bsd-3-
clause
bsd-3-
clause
MPL-
2.0
Other
MIT
MIT
MIT
MIT
MIT
MIT
MIT
bsd-2-
clause
MIT
Apache-
2.0 MIT
Apache-
2.0 MIT
bsd-3-
clause
MIT
MIT
MIT

EVM-Lite:

DEPENDENCY REPOURL LI-
CENSE

github.com/sirupsen/logrus
golang.org/x/crypto/ssh/terminal
golang.org/x/sys/unix
github.com/ethereum/go-ethereum

https://github.com/sirupsen/logrus https:
//go.googlesource.com/crypto https://go.
googlesource.com/sys https://github.com/
ethereum/go-ethereum

MIT
LGPL-
3.0

Babble:

64 Chapter 17. Licences

https://github.com/AndreasBriese/bbloom
https://github.com/btcsuite/btcd
https://github.com/dgraph-io/badger
https://github.com/dgraph-io/badger
https://github.com/dgryski/go-farm
https://github.com/dgryski/go-farm
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/ethereum/go-ethereum
https://github.com/ethereum/go-ethereum
https://github.com/fatih/color
https://github.com/fsnotify/fsnotify
https://github.com/golang/protobuf
https://github.com/golang/protobuf
https://github.com/gorilla/mux
https://github.com/gorilla/mux
https://github.com/hashicorp/hcl
https://github.com/magiconair/properties
https://github.com/mattn/go-colorable
https://github.com/mattn/go-isatty
https://github.com/mgutz/ansi
https://github.com/mitchellh/mapstructure
https://github.com/mitchellh/mapstructure
https://github.com/mosaicnetworks/babble
https://github.com/mosaicnetworks/evm-lite
https://github.com/pelletier/go-toml
https://github.com/pkg/errors
https://github.com/sirupsen/logrus
https://github.com/sirupsen/logrus
https://github.com/spf13/afero
https://github.com/spf13/afero
https://github.com/spf13/cast
https://github.com/spf13/cobra
https://github.com/spf13/jwalterweatherman
https://github.com/spf13/jwalterweatherman
https://github.com/spf13/pflag
https://github.com/spf13/pflag
https://github.com/spf13/viper
https://github.com/spf13/viper
https://github.com/ugorji/go
https://github.com/x-cray/logrus-prefixed-formatter
https://github.com/x-cray/logrus-prefixed-formatter
https://go.googlesource.com/crypto
https://go.googlesource.com/net
https://go.googlesource.com/net
https://go.googlesource.com/net
https://go.googlesource.com/sys
https://go.googlesource.com/sys
https://go.googlesource.com/text
https://go.googlesource.com/text
https://github.com/sirupsen/logrus
https://go.googlesource.com/crypto
https://go.googlesource.com/crypto
https://go.googlesource.com/sys
https://go.googlesource.com/sys
https://github.com/ethereum/go-ethereum
https://github.com/ethereum/go-ethereum

Monetd Documentation, Release 0

DEPENDENCY REPOURL LI-
CENSE

github.com/AndreasBriese/bbloom
github.com/btcsuite/btcd
github.com/btcsuite/fastsha256
github.com/dgraph-io/badger
github.com/dgryski/go-farm
github.com/fsnotify/fsnotify
github.com/golang/protobuf
github.com/hashicorp/hcl
github.com/magiconair/properties
github.com/mitchellh/mapstructure
github.com/pelletier/go-
toml github.com/pkg/errors
github.com/sirupsen/logrus
github.com/spf13/afero
github.com/spf13/cast
github.com/spf13/cobra
github.com/spf13/jwalterweatherman
github.com/spf13/pflag
github.com/spf13/viper
github.com/ugorji/go
golang.org/x/crypto/ssh/terminal
golang.org/x/net/internal/timeseries
golang.org/x/net/trace
golang.org/x/sys/unix
golang.org/x/text/transform
golang.org/x/text/unicode/norm
gopkg.in/yaml.v2
github.com/rifflock/lfshook

https://github.com/AndreasBriese/
bbloom https://github.com/btcsuite/btcd
https://github.com/btcsuite/fastsha256
https://github.com/dgraph-io/badger
https://github.com/dgryski/go-farm
https://github.com/fsnotify/fsnotify
https://github.com/golang/protobuf
https://github.com/hashicorp/hcl https:
//github.com/magiconair/properties
https://github.com/mitchellh/mapstructure
https://github.com/pelletier/go-toml
https://github.com/pkg/errors https:
//github.com/sirupsen/logrus https://github.
com/spf13/afero https://github.com/spf13/cast
https://github.com/spf13/cobra https:
//github.com/spf13/jwalterweatherman
https://github.com/spf13/pflag https://github.
com/spf13/viper https://github.com/ugorji/go
https://go.googlesource.com/crypto
https://go.googlesource.com/net https://go.
googlesource.com/net https://go.googlesource.
com/sys https://go.googlesource.com/text
https://go.googlesource.com/text
https://github.com/rifflock/lfshook

Other
isc
Other
Apache-
2.0
Other
bsd-3-
clause
bsd-3-
clause
MPL-
2.0
Other
MIT
MIT
bsd-2-
clause
MIT
Apache-
2.0 MIT
Apache-
2.0 MIT
bsd-3-
clause
MIT
MIT
MIT

65

https://github.com/AndreasBriese/bbloom
https://github.com/AndreasBriese/bbloom
https://github.com/btcsuite/btcd
https://github.com/btcsuite/fastsha256
https://github.com/dgraph-io/badger
https://github.com/dgryski/go-farm
https://github.com/fsnotify/fsnotify
https://github.com/golang/protobuf
https://github.com/hashicorp/hcl
https://github.com/magiconair/properties
https://github.com/magiconair/properties
https://github.com/mitchellh/mapstructure
https://github.com/pelletier/go-toml
https://github.com/pkg/errors
https://github.com/sirupsen/logrus
https://github.com/sirupsen/logrus
https://github.com/spf13/afero
https://github.com/spf13/afero
https://github.com/spf13/cast
https://github.com/spf13/cobra
https://github.com/spf13/jwalterweatherman
https://github.com/spf13/jwalterweatherman
https://github.com/spf13/pflag
https://github.com/spf13/viper
https://github.com/spf13/viper
https://github.com/ugorji/go
https://go.googlesource.com/crypto
https://go.googlesource.com/net
https://go.googlesource.com/net
https://go.googlesource.com/net
https://go.googlesource.com/sys
https://go.googlesource.com/sys
https://go.googlesource.com/text
https://go.googlesource.com/text
https://github.com/rifflock/lfshook

Monetd Documentation, Release 0

66 Chapter 17. Licences

CHAPTER 18

FAQ

18.1 General

• What is the difference between MONET, MONET Hub, Monet Toolchain and monetd?

• Why Giverny?

18.1.1 What is the difference between MONET, MONET Hub, Monet Toolchain and
monetd?

monetd is the daemon that runs a node on a blockchain. monetd is also a repository on Github. The repository also
hosts giverny which implements advanced configuration options.

The Monet Toolchain consists of the monetd repository, plus additional software, noticeably monetcli. Together
these repositories provide a complete suite of tools for running a blockchain. Whilst the Monet Toolchain was initially
developed for the MONET Hub, it has been designed to be easily used by other projects.

The MONET Hub is a specific blockchain running on the Monet Toolchain software.

MONET is the whole ecosystem containing the MONET Hub, and mobile adhoc blockchains that use the MONET
Hub to persist state.

18.1.2 Why Giverny?

Whilst the name MONET is derived from Mosaic Networks, Giverny was famously the home of Claude Monet and
inspiration for many of his most renowned works.

67

https://github.com/mosaicnetworks/monetd
https://github.com/mosaicnetworks/monetcli
https://monet.network/about.html
https://monet.network/about.html
https://en.wikipedia.org/wiki/Giverny
https://en.wikipedia.org/wiki/Claude_Monet

Monetd Documentation, Release 0

68 Chapter 18. FAQ

CHAPTER 19

The Monet Toolchain

The Monet Toolchain provides software to run and interact with a distributed smart-contract platform based on EVM-
Lite and Babble consensus.

It underpins the MONET Hub, which is an important part of the MONET project, but is licensed under the MIT license
and available for use in other projects. You can read more about MONET in the whitepaper.

19.1 Quick Start

For the impatient, we recommend you start here:

• Installation Documents

• Quick Start

69

https://github.com/mosaicnetworks/evm-lite
https://github.com/mosaicnetworks/evm-lite
https://github.com/mosaicnetworks/babble
https://monet.network/faq.html
https://monet.network/about.html
https://en.wikipedia.org/wiki/MIT_License
http://bit.ly/monet-whitepaper

	MONET and the MONET Hub
	Spectrum of possible Implementations
	Ethereum with Babble Consensus
	PoS and PoA
	Conclusion
	Overview
	Tools
	Monetd
	Monetcli

	Accounts
	What is an account?
	What is an account file?

	Transactions

	Installing monetd
	Versioning
	Docker
	Downloads
	Building From Source
	Dependencies
	Installation

	Getting Started
	Creating A Single Node Network
	Using monetcli

	Joining a Network
	Create An Account
	Pull the Configuration From an Existing Node
	Apply to Join the Network
	Starting the Node

	Transaction Fees
	Distribution Among Validators
	Minimum Gas Price

	Monetd API
	Get Account
	Call
	Submit Transaction
	Get Receipt
	Info
	POA
	Genesis.json
	Block
	Current Peers
	Genesis Peers

	POA Smart Contract
	Solidity
	Version
	Constructor
	Modifier
	CheckAuthorised
	Payable calls
	Decision Function
	Information Calls
	Events

	Generated Genesis Whitelist Section

	Giverny Examples
	Development Test Networks
	New
	Export Network

	Monetd Configuration
	Eth
	Babble
	Run Options

	Monetd Reference
	Global Parameters
	Version
	Keys
	Parameters
	Monikers
	New
	Inspect
	Update
	List

	Config
	Clear
	Contract
	Location
	Build
	Pull

	Run

	Giverny Reference
	Global Flag
	Help
	Version
	Keys
	Keys Flags
	Import

	Server
	Start
	Stop
	Status

	Network
	Location
	New
	Build
	Export
	Import

	Transactions

	Licences
	FAQ
	General
	What is the difference between MONET, MONET Hub, Monet Toolchain and monetd?
	Why Giverny?

	The Monet Toolchain
	Quick Start

